e

A B )

< 40 A f
-

N95- 25804

Control Theory and Splines, Applied to
Signature Storage

by
Per Enqvist

September 12, 1994



Abstract

In this report the problem we are going to study, is the interpolation of a set
of points in the plane with the use of control theory. We will discover how
different systems generate different kinds of splines, cubic and exponential,
and investigate the effect that the different systems have on the tracking
problem. Actually we will see that the important parameters will be the two
eigenvalues of the control matrix.



CONTENTS
Contents
1 Introduction
2 Reachability
3 The System
4 Derivations
5 Boundary Conditions
5.1 Kpown velocities at boundary . . . .. .. .. ..o
5.1.1 Zeroinitial velocity . . . . . . . .o oo
5.1.2 Derivative approximation. . . . . . . .« . oo o
5.2 Constant velocity . . . . . .« o o e
6 Results
6.1 Fourtest curves . . . . . « « o v v v bt
6.2 Applied on asignature . . . . ... ...
7 Resumé - Summary in Swedish
8 Programs
8.1 Matlab Program . . . . . .. ..o

82 Maple Program . . . . . ... ..o

i |

12
13
14
15
16



LIST OF FIGURES

List of Figures

W O N

= © 0 =] &

o

Example of eigenvalues effect on signature. . . . . ... .. ..
Example of eigenvalues effect on control signals. . . ... . ..
Circle . . . . . e
Absolute Value . . . . . . . ... .. oo
Cycloid . . . . . . i i i i e
Prolate Cycloid . . . . .. ... ... ... . .
Signature . . . . . . ...
Reproduction of signature . . . ... ... .. ..... .. ..

List of Tables

W It —

p units of error for unit circle. . . . .. ... oo L
punitsoferrorfory =lzf. . . . .. ... .. o oL
¢ units of error for cycloid. . . . . ... ...
4 units of error for prolate cycloid. . . . ... .. ... .. ..



1 INTRODUCTION 3

1 Introduction

I would like to begin by thanking my advisor Pr. Anders Lindquist for
initiating contact with Texas Tech. I would also like to thank Pr. Clyde F.
Martin for being my advisor at Texas Tech.

In this report we will look at a way to store signatures. We want to
do this by storing only a minimal amount of points on the signature curve,
and still be able to reconstruct the curve by interpolating these poiats. The
interpolation will be performed by splines, and we will look at the common
splines-problem from the control theory point of view. We can construct a
trajectory of a system that passes through a specified set of points, and thus
interpolate the points.

Two questions that need to be answered arise. First, when is it possible
for the system to pass through the points? Second, when there are many
ways to accomplish that, what sort of conditions should we demand that the
system fulfill in order that we get a unique solution.

The question of when it is possible to interpolate the points will be an-
swered in the general case in section 2 Reachability and for our particular
svstem in section 3 The System.

An algorithm to find the solution is developed in section 4 Der:vations.

The choice of boundary conditions is discussed in section 5 Boundary

conditions.
In section 6 Results the results of tests done upon parametric curves are

displayved and discussed.

A summary in Swedish is provided in section 7 Resumé - Summary in
Swedish.

The programs I have been using are included in section 8 Programs. In-
cluded among the Matlab programs is an altered version of the original Mat-
lab program quad8.

When we have answered the two questions, we have to decide what kind
of system we will use for the interpolation. We can easily imagine that we
would get to completely different curves if we asked a pedestrian to walk
through a set of points and if we asked a cyclist to ride his bike through the
same points. In the first case we would get (if we suppose that man is lazy),
linear interpolation, and in the second case we would get a smooth rounded
curve. This is the same as in our case where we have exponential and cubic

parametric splines.



2 REACHABILITY 4

2 Reachability

In this section we will determine under what circumstances it is possible to
take a time invariant linear system from a point X at time o to a point x;
at time t;. It is a vital property to us, because, in order to interpolate we
have to be able to pass through the points. We will call a system completely
reachable if it has the property that this can be done in any positive time

for any two points.
This is a classical control theory question, and it is answered by the

following well known theorem, which was at least implicitly discovered by
Kalman.

Theorem 2.1 Suppose that the system below is given,
{ x = Ax+ Bu
Cx

Y

where A isn xn and B is n x k. Then it is completely reachable iff T =
[B,AB,A*B,..., A" 'B)], is full rank.

In order to prove this and understand how the reachability concept can be
characterized by the matrix ', we will have to look at the general solution

of equation 2.1.

¢
x(t) = eAlt-tolx, + et=*) Bu,(s)ds (2.2)
to
In order to have the desired state x; at time ¢, the following equality must

be satisfied. .
x; = edlti=)x, 4 [ &A1) By, (s)ds (2.3)

to
The question of reachability is now easily seen to be the question of whether
there are any solutions to the mapping L : i — R™ such that

t
Lud / 1 eA(“")Bu(s)ds =%, — eA(tx-to)xo 24 (2,4)
to

Since we recognize L as a linear operator, it is as always very fruitful to use
a theorem from the general theory of functional analysis [4, p.250].



2 REACHABILITY 5

Theorem 2.2 If X, Y are complete inner-product spaces and A:X — Y is
a linear continuous operator then

JmA = JmAA"

We know that R™ is a Hilbert space, but we have to look at what kind of
space U is. We choose to introduce the following inner product for &/

(u, v)y & /“ a(t)'v(t)dt

to

and it can be checked that U becomes a Hilbert space. We know that there
is a adjoint operator L= : R™~—{ such that

(d, Lu)gn = (L'd, u)u

and we get the adjoint L= of the mapping L through this equation

¢
(d, Lu)r~ = d'/leA("")Bu(S)ds
t

¢ '
- / (B'e¥'4=d) u(s)ds = (L*d, u)y
to

We thus have a linear mapping W £ LL* : R*~— R", that is, it is actually
only a matrix operator.

WaLL = /tl eAti=9) ppred’(ti=9) 4g

to

With only the basic knowledge about matrices we will now be able to prove
the following lemma -

Lemma 2.1 Let A be n x n and B be n x k. Then, for all to, t; such that
to < t; we have

ImW(to,t,) = Im [B, AB, A’B,..., A" B]
Proof: We will do this by showing that JmI' C JmW and JmW C JImrl.

[Jml C ImW]



2 REACHABILITY 6

Let a € RetW, which implies that 0 = a'Wa = [ a’edtt=9) BB'eA (11 =3) ads,

1.e.
/‘l
to

B'eA'(“"’)a[ ds=0

from which it follows that

Bletli=95 =, Vs € [to, t1]
le,
> =t — Y B(AYa =0,
1=0 J'

This implies that [B, AB. A?B,..., A" 'B]'a = 0. That is, for an arbitrary
a € fetW we have a € fer[” which implies that RerW C RKer[” and by a
theorem from fundamental algebra this equals Jm[' C ImWW.

[ImW C JmI]
Suppose a € JmlV. Then there exists a x € R such that a = Wx, and

hence

a= Z 413/0 S0 =) Be s

from which it is obvious that a € Jm[B,AB, A?B,...] and by Cayley-
Hamiltons theorem that a € Jm[, which concludes the proof. O

The main theorem of this section will follow as a direct consequence of

the lemma.

Proof:[Theorem 2.1] By lemma 2.1, x; —e*("~%)xq £ d € R" and IJm[' = R"
implies complete reachability.O



3 THE SYSTEM 7

3 The System

We will consider the system with the state and dynamics given by

: %X = Ax+ Bu
X = 1 (3‘5)
y y = Cx
)
where
0 1 0 O 00
0 M o a 1 0 1 000
A= ,B = ,C = (3.6)
0 0 0 1 00 0010
Br B2 0 A 0 1
This gives us the property
z
= C‘ =
v ( y )
and the system dynamics will look like
I = /\II + a1y + ag_il + uy (3'7)
§ = Ay+5z+hitu
And it gives us the following T’
00 1 0 A1 aa I Tis ]

1 0 /\1 [04)) 02,32 + /\f (24} -I- C!z(A]_ + /\2) 1’2'7 F2,8
0 0 0 1 ﬂz A2 I3z Tag
[0 1 B2 A Bi+Fo(M+A2) a2z + A3 47 Tas

where



4 DERIVATIONS 8

(T17 = a8+ A
Fis = a) +ax(d + Ag)
T2 = a3+ @i + @320 + A2) + A4
Tos = a2 +ari(M+A2) + aa AP + A A + ap Al
Tar = B+ B820M + A2)
T3 = axfr+ A
Lz = a2+ 5:1(M+ )+ B2A7 + G2AiAs + 323
Tis = arFe+a2f1 + axd2(M +20) + A3

\

As [ is easily seen to have full row rank, by simply looking at the first four
columns. The class of systems we are going to consider in this article will all
have the desired property of complete reachability, by Theorem 2.1.

4 Derivations

Given a set of points in the plane {(zo,%0),(21,¥1)s---1(%n,yn)} and the
corresponding time points {tg,t1,...,t.} we would like to find the control
functions {ug, Ui, .., Ua-1 } that takes the system through the points at the

specified times.

Let’s study the control uy : ( Xk ) — ( Xit1 )

L tis1
As t € [tg, trs1] the state of the system will be

t
x(t) = e*~Wx, + [ e Bug(s)ds (4.8)
te
and as we want the state of the system to be xx4; at time x4, we get the
following condition.

tk
Xps1 = CA(tk+l—¢k)xk + + eA("‘“’")Buk(s)ds (49)
L



4 DERIVATIONS 9

The solution u; to equation 4.9 that minimizes the norm of the control
signal is then given by

' tes ; -1
ug(t) = B'e™*" ('/: Wed:): Tat ’ds> (e"“"“x;‘.ﬂ - e"“"xk> (4.10)

The control would be specified completely by equation 4.10 if we knew the
whole state-vector at each interpolation point. We know all (zx,yx) but we
do not know the (Zx,yx). To determine the 2(n + 1) unknowns we have to
apply some conditions on the solution, and our first choice will be to require
that the control is continuous,

Assumption 4.1

Ui(tesr) = Uksr(tes1), k=0...n -2

This will give us 2(n — 1) conditions and will leave only four unknowns. We
will apply the additional conditions on the boundary and we will have to

come back to this in section 5 Boundary Conditions.
In many applications it is just the shape of the trajectory that matters.

and not the velocity that the system tracks the trajectory with. In these
cases it makes it much easier to assume that the time between each point is

a constant.
Assumption 4.2 Let tepy — tx = h.

Assumption 4.2 can be used to simplify the integral in equation 4.10.
‘ B
/ e BBl s = (1= s~ i} =
tx

h [ I
- —. - —~A"t
e ’“"/ e~ AT BB drem A
0

S

——

matrizconstant

Definition 4.1 i
ME / e~ATBB'e~*"dr
0



4 DERIVATIONS 10

We can now rewrite expression 4.10 as

uk(t) = B'e-Al(t—"')iw-l(C—AhXH.l - X;;) (4.11)

Using this expression we will now investigate how the continuity condition
in assumption 4.1 looks.

t=A'h A r=1( —Ah -
uk(t;ﬁ.l) = B'e M (e Xk+1 — xk) =
1y =17 —Ah —
B M e xps2 — Xkr1) = We1(tes1)
We can rewrite this condition using

Definition 4.2

Z % A’[—IC—Ah
W & e~ Aharlem 4 Mt

giving the equation the simple form

B’ (Z'xx — WXi41 + ZXe42) =0, k=0...n-2 (4.12)

In block diagonal form

Xo
[z -W Z ... 0 0 0] x
0 20 -W ... 0 0 0 X2
Bl : P N : | =0 (4.13)
0 0 0o ... -W zZ 0 Xn-2
0 0 0 ... Z =W Z || %
L X

Now, we have to look at what the unknowns are. The vector in equation 4.13

is made up of subvectors
Tk
T
Yk
Yk

Xk =



4 DERIVATIONS 11

consisting of two knowns and two unknowns. By partitioning the submatrixes
W, Z as

W=|w; wy wa wy |, Z=|21 22 23 24 |={|""" "°

and using the notations given in the following the definition, we can keep
the unknowns on the left side and move the position coordinates over to the
right hand side.

Definition 4.3

T Wa1 W43
[ 222 224
Zlﬁ = Bl 22 24 ] =
g 242 244
a 221 223
Zf‘ = Bz, z3|=
241 243
r 4
B _ 1 %20} _ | c22 Za2
Zy = B = .
| %4 224 244
~ !
B _ | 21 _ | 512 232
Z2 = B =7
L <3 “14 I




5 BOUNDARY CONDITIONS

And we get the system

[ Z“B —WIB Zlﬁ “eoe 0 0 0 1
0o zp -wg ... 0 0 0
0 0 0 ... -W2 Zz8 o
0 0 0o ... zB -wp ZzZB |
[ zB w8 ZB 0 0 0
0o ZzB -wh 0 0 0
0 0 0 ... =WB ZB 0
| 0 0 o ... 2B -wB Z& |

vel 9

vel
Xy

xue!

X vel

n=2

vei
xn—l

xvcl

n -
- pos
Xo

xxl;a:
xéos

pos

Xn-2
pos

Xn-1

pos
Xn

-

12

As we evaluate the right hand side, we get a constant vector. Depending
on what kind of boundary conditions we choose to use, the derivations differ
from here. We will deal with the most common cases, each case in turn,

beginning in the next chapter.

5 Boundary Conditions

In order to get a unique solution to our problem, we had to apply the con-
tinuity condition and the boundary conditions. The continuity condition is
a rather natural condition, but the boundary conditions have to be studied
more extensively. The four most common choices of boundary conditions in

the one dimensional case according to (2] are
1. Zero velocity at the first and at the last point.
2. Specified starting and ending direction.
3. Natural boundary conditions, y” = 0.

4. Periodical conditions.



5 BOUNDARY CONDITIONS 13

We will look at how the two dimensional equivalent of choice number 1
and 2 affect the curves, and for which the same derivation is valid.

Item 3:s two dimensional equivalent, Z = § = 0, requires a derivation and
will be studied in subsection 3.2.

We will avoid dealing with condition 4 as it only complicates the calcula-
tions, and would only be natural and interesting if we were to write the same
word twice, connected with itself as RogerRoger.

Because the effect of the boundary conditions are similar at both bound-
aries we will restrict ourselves to only talking about the starting point.

5.1 Known velocities at boundary

We have assumed that we also know x2 and x®®. Moving these over to the
right hand side, we get a block diagonal matrix system to solve.

[ -w2 zZB ... 0 0 J[x 71 [ 9 ]
zP -wg ... 0 0 xye! Q,
: P : Lol= (5.14)
0 0o ... -Wg ZzZ8 xve, Qn_sz
i 0 0 ZHB —WIB ] L x;’f_’l ) ] Qn—l ]
Where
O = —ZAxE + WEXP? - Z5x5 - Z0xg”
Do = —ZRxP + WINPT - 20,

- B_ pos B _ pos B pos B vel
Q"“l - '_Zrlxn—l + Wr Xao—1 — Zruxn - Zluxn

This can easily be solved, and with a linear increase of time. Having solved
the system above we now know all the states of the system in the interpolation
points. We will now use equation 4.11 for the control, and insert it into

equation 4.8 to get the trajectory.

t—t ,
x(t) = ettt (xk + / “eATBBe T dr M~ (e M xepy — Xk))
Q

fork = 0...n-1 )
t € [te,ti] (5.15)



5 BOUNDARY CONDITIONS 14

As we can see from equation 5.15 the fundamental matrix and the integral
is the same for all k and only has to be evaluated for ¢ — ¢, between 0 and h,

once and for all.

5.1.1 Zero initial velocity
We can choose to set

Assumption 5.1

With this condition, we will let the system start up in whatever direction
that minimizes the energy norm of the control signal and takes the system
to the second point.

As we know from one dimensional control theory, a system with a transfer
function with zeros in the numerator will start off in the opposite direction
to where it is going. Such undesired properties should certainly be avoided in
our tracking problem. In the case where a; = a; = 3; = 3 = 0, the states
x and y are independent, yvielding two one dimensional transfer functions. It
is easily seen to have no zeros, which is good.

Otherwise, we will have to look at the two dimensional transfer function
given below:

1

T = X
(5) st — (A1 4+ A2)8% + (MAr — a2Ba)s? = (1B + a2f)s — an

s(s—=A2) o + Qas
x 5.16
Bi+ 85 s(s— M) (5.16)

This is a bit more tricky, and we will have to find the Q and D of least degree
that is a solution to the equation

and satisfies



5 BOUNDARY CONDITIONS 15

It is easy to verify that the choice

Q(s)=1, D(s)= —5(5931;?2)3) —ﬁzj-;z)s)

is a solution to equation 5.17, and there exists X(s) and Y(s) so that equa-
tion 5.18 is satisfled. From Q(s) we can see that the system has no zeros.
The zero initial conditions should thus not give us any problems.

5.1.2 Derivative approximation

Instead of setting the velocity equal to zero, another alternative is of course to
specify a starting velocity. However, this requires that we make a good choice,
to avoid situations as exemplified below. Using a bad direction and a high

velocity boundary condition on y = z%, we get the graph of figure 1. Even
as we are using n=40 to reproduce the curve, the bad boundary conditions

are still ruining the tracking.

o.8F
0.6
0.4

o2f

Q9

-15 -1 -as -] 0.5 1 1.5

Figure 1: Trajectory of system tracking y = z°, with badly specified starting
direction

As discussed in [3, p.86], the fact is that when we set the boundary

conditions in the parametric case, we do not only specify a direction, but
also the speed in that direction. The greater the speed, the greater impact



5 BOUNDARY CONDITIONS 16

the boundary conditions will have on the solution. We are thus forced to
make a good choice, and we would like the choice to get better the more
interpolation points we are using. A simple choice that satisfies this is

Assumption 5.2

(i: . ) _ X1 =X

a> Yo —h

. . Xn — Xn-t
TnsYn = Y
( n y ) h

which imply that we will set off from the first point in the direction of the
second point, and arrive at the last point in the direction from the next last
point.

Another way of deciding the initial velocity would be to use the same
technic as in Bezier curves and choose the settings graphically. This would
probably be the best way to get the desired properties of the signatures. As
discussed in [3] the choice of boundary conditions will affect the whole curve,
and the solving of the blockdiagonal system must be done over from scratch,
making this method a bit slow. If we are going to do this only once to store
a signature it does not matter. What matters with this method is that it
adds four more parameters to be stored, and we could probably get equally
good results just by increasing the number of interpolation points by two.

5.2 Constant velocity

Suppose we want to use the boundary conditions

Assumption 5.3

This will let the initial direction and constant velocity of the system be
decided so that the control energy is minimized. Using the system dynamics
equations 3.7, we get the equation system below.



5 BOUNDARY CONDITIONS 17

Al o Io | _ a1¥o -
[ﬁz Az][yoJ*“"(o)"‘[ﬁlzo (5.19)
where
u(0) = B'M e x; —xq) (5.20)
= B'Zx; - BM 'x (5.21)

Now, by using partitioned matrixes as in section 4 and the following defini-
tion,

-1 -1 ~1 -1

. A | M2 mg sl My m
Definition 5.1 U = iy’ _41 ) Uy = -11 4-11
My My Moz Mgy

we get the system

A az ve ve =

= (Uru - [ 51 OE)I D x5 — ZA x>

In a similar way we get the equation at the other boundary.

/\ e Ve =
([ﬂi Tj}ﬂ%‘f—mu) )l — ZBxd = (5.23)

0 03 3
= (Um-WrB_ [ﬂl C(*)l Dxi + ZBx2

Adding these two equations to equation 4.14 yields a blockdiagonal system
to solve. This system is two blocks bigger than the one in section 3.1, but it
can also be solved with a linear increase of time. And once it is solved, we
can still use equation 5.15.

A comparison between the three boundary conditions, BC=1 zero initial
velocity, BC=2 derivative approximation, and BC=3 zero initial acceleration
is made in section 6.



6 RESULTS 18

6 Results

The first tests with the algorithm were done with matrices A with both
eigenvalues equal to zero, Ay = 0, M =0,and oy = a2 = 51 = 32 = 0.
This produces cubic parametric splines, and makes the calculation of the
fundamental matrix easy. The cubic splines produce smooth curves, but were
also able to reconstruct a cusp much better than you would have guessed at

first, as shown in figure 2.

o9k
o.8f
0.7+
0.6
0.5+
041
0.3F
0.2k

(R

Q

-1 08 08 04 02 0 02 04 a6 0.8 1

« . 2 . . . .
Figure 2: Reconstruction of y = z3 with cubic parametric splines where

-

n=10.

If we look at the function y = 23 we know that this function describes a
cusp. But if we parameterized it like z = t3,y = t* we see that both r and
y are smooth cubic functions of ¢, so it is not very remarkable that it can be
reconstructed well.

When we used A-matrices with nonzero eigenvalues, and decoupled z
and y coordinates, i.e. a; = @2 = By = B2 = 0, we were able to generate
exponential parametric splines with the basis functions 1, Ait, et e~Mt and
1, Agt, e, e~*2t for the z and y coordinates.

The result of taking big eigenvalues is almost linear interpolation, which
can be good for certain applications, but not if it is to be used for storing
signatures. It is quite obvious that the roundness of a persons signature is
one important factor of it’s characteristics. Therefore, it’s vital that one of



6 RESULTS 19

L1 [ TS
7+ 7F
(14 s
sh sk
ap 13
E1d a
2r 2k
1 1
] e - A - e 0
9 2 4 [ 3 ] 10 12 Q 2 4 [} 8 10 2
Figure 3: Graph of signature Per, reproduced with Ay = 1,A; =11in the lett
figure, and A; = 100, \; = 100 in the right
1000 4000 ¢
Soof 2000}
0 ar L
r -2000¢ e
1000 e— - 000 - :
[} a2 o4 0.8 ¥ } 1 12 14 1.6 1.8 2 [-] 02 o4 o8 s 1 12 1.4 1.8 1.8 2
4000
2000
14 \ r—
2000+
~4000
Q 0‘2 0.4 ﬂrl O:l 1 1‘2 ‘:0 1tl 1.8 é

Figure 4: Graph of control signals in figure above.



6 RESULTS 20

data stored on the signature is the eigenvalues of the A-matrix, as can be
shown in figure 3.

Figure 4 shows the corresponding control signals. In the M=1LA=1
case the linear part of the control is dominating, and in the \; = 100, A, =
100 case the exponential part is dominating. It is also evident that the
magnitude of the control sigrals is greater in the case of larger eigenvalues,
but that is not a problem for our fictitious system.

In the case of nonzero ai,az, i, 32 we get a coupling between the z
and y coordinates. This will give us very complicated basis functions, like
polynomials times exponentials times sine- and cosine-functions.

As with all approximation methods one should always investigate how big
the errors are. To do this we had to somehow determine the distance between
the original curve and the interpolating one. The tests were performed on
known parametric curves, so we had an explicit expression for the points on
the original curve. We had to try to find the nearest point on the original
curve to the point on the trajectory. This was solved aumerically with the
“Golden Intersection algorithm” . For the method to work we have to assume

two things :

1. The section of the original curve between the two interpolation points

nearest in time is convex.

o

The point on the original curve nearest the point on the interpolating
curve lies on the section in item 1.

As an error estimate [ have calculated the distance between a number of
points on the reproduced curve and the original curve and divided with the
number of points. We have applied this error estimate method on four dif-
ferent curves and with different number of interpolation points and 40 points
between each of these.

points | BC=1 BC=2 BC=3
n =10 6671.1 5821.1 4315.9
n =20 1028.4 765.6 302.1
n =100 8.8 5.9 3.5

Table 1: g units of error for unit circle.



21

6 RESULTS

[ S

a8 48 44 44 ¢ U M s 4

O

Tl 48 44 a2 ¢ o M o s LA a8 a4 a2 10 U M 4w

Figure 5: Graph of circle, reproduced with n=10 and A, = 10,7\, = 10,
BC=1,2,3

6.1 Four test curves

The first curve we tested was the unit circle. This very round curve was
tracked best by the cubic splines, but the exponential splines did a good job
too, as can be seen in figure 53 and tabie 1. We can also see that the error
was smallest in the case of zero initial acceleration boundary conditions.

14
0.9¢
Q.8
a7
oe
as
Qa4r
A3
Q.2F

R 1

2 o8 08 -4 a2 0 a2 a4 08 08 1

N33 =8 =¢ =z 9 az o4 08 o8 1
Figure 6: Graph of y = |z|, reproduced with n=10, n=20 and A\, = 10,A; =
10, BC=2

Next, we looked at a curve with the opposite properties, linear and non-
differentiable, y = |z|. The error is mainly located between the two points



6 RESULTS 22

points | BC=1 BC=2 BC=3
n=10 | 3430.3  3446.8 34303
n =20 ] 972.6 972.6 972.6
n =100 40.7 10.7 40.7

Table 2: g units of error for y = |z|.

next to the non-differentiable point. As could be guessed the tracking of
the curve y = |z| got better the bigger the eigenvalues of the A matrix
were, the error was reduced to 142 g units for A = A; = 300 in the case of
BC =1 and n = 10, but for bigger values the numerical calculations failed.
Using negative eigenvalues gives the same error as the positive, which can be
expected since we have a symmetric curve and time interval and by looking
at the basis functions. The results with different boundary conditions were
very much alike, as seen in table 2.

This was the only case were BC 3 did not give us the smallest error.

Can we get a smaller error with any choice of the coupling parameters?
Yes, for example by choosing a; = —ap = §1 = —=3: = 10, we get the
error 3249 4 units for n=10. Choosing these parameters could thus be a way
to reduce the error, but by using n = 12 instead, we got the error 2506 u
units. So we do not get a more efficient way to store it, unless we can find
parameters so we get below 2306 g units.

points | BC=1 BC=2 BC=3
n=10 6306.6 5313.7 3842.9
n=20 1014.4 725.4 460.9
n =100 8.8 5.8 3.4

Table 3: u units of error for cycloid.

points | BC=1 BC =2 BC=3
n=10 13897.6 11664.8 8867.6
n =20 2100.5 1531.0 1001.7
n =100 17.7 11.8 7.0

Table 4: p units of error for prolate cycloid.



6 RESULTS 23

2r 2
1.8 ‘.S[
1.6¢ 1.6+
1.4F 1.44
12¢ 124
1+ 1k
o8 [+X.14
as Q.64
Qer Q4r
02F 02r
b Y -1 0 1 2 3 r % 3 ) i 0 1 2 3 4
Figure 7: Graph of cycloid, BC= 2, reproduced with n=10, n=100 and
A1 =102, =10
3r I
25F 25k
2 2+
15+ 1.5¢
th 1k
05k 05)
of oF
-asf -ast
L -2 o 0o 1 2 ] + L =3 -2 -1 0 1 2 3 4

Figure 8: Graph of prolate cycloid, BC= 2, reproduced with n=10, n=100
and )\1 = 10, Az =10



6 RESULTS 24

Finally we look at a cycloid.

z = wt-—sinwt
y = 1l-—cosmt

and a prolate cycloid.
r = =wt-2sinw
y = 1l—=2coswt

It is evident that the cusp and the crossover do not cause any problem, as
could be expected since we are using a parameterized interpolant.

We can compare the difference of the graphs in figure 7 and figure 8,
where we are using one crude approximation with n=10 and ore extensive
approximation with n=100. This time it is evident that the error is mainly
located at the boundaries. In table 3 and table 4 we can see that the best
results came from using constant velocity boundary conditions.

Looking at table 3 and table 4 again. we see that the error decreases at
an approximately cubic rate as the number of interpolation points increase,
which is much better than the quadratic decrease that can be seen in table 2.

My guess is that this behavior comes from the fact that the curve y = |z]
does not have a differentiable parameterization.

6.2 Applied on a signature

Included as figure 9 is a scanned picture of my own signature. I have tried
to pick some roughly equidistant points on the signature, (According to the
scale indicated on the axis.) and used the interpolation algorithm we have
been studying to reproduce it. The reproduction is made with n = 74,
A1 = A2 = 10 and no coupling between the two coordinates. For boundary
conditions I have chosen to use constant velocity, since it has been the most
successful condition.

As can be seen we get a verv close resemblance between the original and
the reproduction. How close is hard to say because we do not have the
signature given as a parameterized function, therefore we are not able to
calculate the error as before.

The things characterizing the signatures, are also the things that are hard
to recover with the interpolation. Such as the turnover in the connection from
the “P”, and the cusps in the “r”. To get a good reproduction, an equidistant



6 RESULTS

Figure 10: The reproduced signature

(W]
()]



7 RESUME - SUMMARY IN SWEDISH 26

distribution of the interpolation points is not enough, more points has to be
concentrated around the characterizing areas.

7 Resumé - Summary in Swedish

Lagring av signaturer kan géras pd méanga satt. Vi har valt att lagra ett antal
punkter pa signaturen, och sedan reproducera denna gzenom att interpolera
punkterna med splines.

Genom att anvinda vilkidnda resultat inom systemteori sa kan man gener-
era olika sorters splines genom att dndra pa nagra parametrar. Jag har nytt-
jat denna metod fOr att generera parametriserade splines i planet. Man inser
smart atc man maste infora randvillkor pa l6sningen. och valet av dessa far
inte ske hur som helst eftersom de paverkar hela 1dsningen. Darfdr har jag
lagt ner en hel del arbete just pa denna punkt. De bista resulteten har jag
erhallit genom valet att ha konstant hastighet vid dndpunkterna.

En av de saker som karaktériserar handstilar ar dess rundhet. Denna kan
ges en direkt dversitining i egenvérdena till systemmatrisen, och vi kommer
alltsd vilja att lagra dessa utdver punkterna pa signaturen.



8 PROGRAMS

8 Programs

27

The programs in Matlab and Maple that were used to implement the algo-

rithm developed in this report follow.

8.1 Matlab Program

To make it easier to understand the structure of the program, the following

flow charts describe how the programs are traversed.

run(BC,nn)

o}

o

FEvaluates the parameterized function in nn points.

{ L XX(nn),YY(nn) |

— points(nn)

Applies the algorithm on the points in R.
—-Ih alg(R,xvel0,xveln) or alg2(R) J

®
alg, alg2 Evaluates the matriz integral M.
) ——{*quadSmod(int) }——-{EuadSstpmod(int)J
Evaluates an error estimate.
o - dist T helpdist ]

— A —
L‘ XX, YY J—-l

The loops marked with an unfilled circle is only available when the inter-
polated points are given by the parameterized function (XX(t),YY(t).



8 PROGRAMS 28

function error=run(BC,nn);
%BC % Type of boundary conditions
% 1 = zero initial and final velocity.
% 2 = heading for first point, last.
% 3 = zero initial and final acceleration.
% If nn is specified, rums alg with on points given by XX,YY.
% Otherwise runs alg with points given by ginput.
global n h alphal alpha2 betal beta2 lambdal lambda2l
global errorcalc ctrlsignal

clg

“% Setting of parameters
alphal=0;

alpha2=0;

betal=0;

beta2=0;

lambda1=10;

lambda2=10;

% Decides what steps are going to be made

errorcalc=1; % error estimation
ctrlsignal=0; % plotting of control signals
if nargin ==

[x,yl=ginput;
R(1,:)=x’; R(2,:)=y’;
else
R=points(an);
end;

n=length(R)-1; ) Number of interpolationpoints -1.
h=2/n; % Time inbetween points

%, Plots a circle at all the points thats interpolated %

hold on .
for i=1:n+1



8§ PROGRAMS

plot(R(1,1),R(2,1i),’0")
end;

%4 Calling alg with the prepared data %%
if BC == 3
error=alg2(R);
else
if BC == 2, xvelO=(R(:,2)-R(:,1))/h;
else xvelO=zeros(2,1);
end;
if BC == 2, xveln=(R(:,n+1)-R(:,n))/h;
else xveln=zeros(2,1);
end;
error=alg(R,xvel0, xveln);
end;

%4 Loop to allow graphic alteration of BC. %%

b=input(’"1" for graphic mod of BC, "0" to quit ’);
while b == 1,

xvelO=10*(ginput(1)’'-3(:,1));

xveln=-10*(ginput (1) ’-R(:,n+1));

clg

hold on

for i=1:n+1

plot(R(1,1),R(2,i),%0)

end;

error=alg(R,xvel0,xveln);

b=input(’"1" for graphic mod of BC, "0" to quit ’);
end;

end;

function R=points(nn);
% Forms R with the help of XX, YY.

29






8 PROGRAMS 30

% R = 2x(nn+1)-matrix.
global a b h

a=1l; b=a;
h=2/nn;

for i= O:an
R(:,i+1)=[XX(~1+i*h); YY(-1+ixh)];

end

end;

function res=XX(t);

global a b
res= axt*pi-bxsin(tx*pi);
end;

function res=YY(t)

global a b
res= a-bxcos(t*pi);
end;

function error=alg(R,xvel0,xveln);
4 R = Matrix of interpolatiompeints, x0 ... xu.
% first row = x-coordinates, second row = y-coordinates.

% xvelO, xveln = Boundary conditions

global a b A B Cn h alphal alpha2 betal beta2 lambdal lambda2
global errorcalc ctrlsignal

%. The System %%

1 0 0]

A=[[ 0
[ 0 lambdal alphal alpha2]



8 PROGRAMS 31

(0o 0 01]

[ betal beta2 0 lambda2]];
B=[[0 0]

[1 0]

(0 0]

(o 111;
c=[{1 0 0 0]

(0 010]l;
Y, Calculation of the integral from O to h in m steps %i
m=40; Y, number of points between interpolatiompoints
tol=1e-08; %, the numeric error tolerance

Mtau(:,1:4)=zeros(4);
tau=0;
for j=1:m
oldtau=tau;
tau=oldtau+h/m;
Mtau(:,4*j+1:4*j+4)= quad8mod(’int’,oldtau,tau,tcl)
+ Mtau(:,4*j-3:4%3);
end;
M=Mtau(:,4*m+1:4*m+4);

%Y, Forming of the Matrixes for the Blockdiagonal system W

e_Ah=expm(-A*h) ;
Minv=inv(M);
ZZ=Minv=*e_Ah;
WW=e_Ah’*ZZ+Minv;

WL=[WW(2,2) WW(2,4); WW(4,2) WW(4,4)]; ' Partitioning matrixes
ZLU=[22(2,2) ZZ(2,4); 2Z(4,2) ZZ(4,4)];
ZLL=(22(2,2) ZZ(4,2); 2Z(2,4) Z2Z(4,4)];

WR=[WW(2,1) WW(2,3); WW(4,1) WW(4,3)];
ZRU=[22(2,1) 2Z(2,3); ZZ(4,1) ZZ(4,3)];
ZRL=[ZZ(1,2) 22(3,2); 2Z(1,4) 2Z(3,4)];



8 PROGRAMS

%/ The boundary conditions %%

xvel(:,1)=xvel0;
xvel(:,n+l)=xveln;

%4 Forming of the right side of the Blockdiagonal system %%

for i=2:n
Omega(:,1)=ZRL*R(:,i-1)-WR*R(:,1)+ZRU*R(:,i+1);

end;

Omega(:,2)=0Omega(:,2)+ZLL*xvel(:,1);

Cmega(:,n)=0Omega(:,n)+ZLU*xvel(:,n+1);

%% Gausselimination to produce upper triangular system %%

DD(:,3:4)=WL;

for i=3:n
zd=ZLL*inv(DD(:,2%i-3:2%i-2));
DD(:,2*%1i-1:2%1i)=WL-zd*ZLU;
Omega(:,i)=Omega(:,i)+zd*0mega(:,i-1);

end

%% Backsubstitution to solve for the xvel i

xvel(:,n)=DD(:,2*n-1:2*n)\Omega(:,n);

for i=n-1:-1:2
xvel(:,i)=DD(:,2*i-1:2*1)\(ZLU*xvel(:,i+1)+0mega(:,1i));

end;

% Making of state vectors %%

for i=0:n
x(:,i+1)=[[R(1,i+1)]
[xvel(1l,i+1)]
[R(2,i+1)]
[xvel(2,i+1)]1]1;

32



PRECEDING PAGE SLAWE WOf FRaD

8 PROGRAMS 34

function error=alg2(R);
% R = Matrix of interpolatiompoints, =x0 ... xm.

% first row = x-cocordinates, second row = y-coordinates.
% BC = acceleration in x and y direction are both = 0.

global a b A B Cn h alphal alpha2 betal betal lambdal lambdaZl
global errorcalc ctrlsignal

%4 The System %

A=[L 0 1 0 0]

( 0 lambdal alphal alpha2]

(0 O 0 1]

[ betal beta2 0 lambda2]];
B=[{0 0]

(1 0]

[0 0]

(o 111;
Cc={[1 0 0 0]

[0 01 01];
%4 Calculation of the integral from O to h in m steps Wi
m=40; % number of points between interpolationpoints
tol=1e-08; % the numeric error tolerance

Mtau(:,1:4)=zeros(4);
tau=0;
for j=l:m
oldtau=tau;
tau=oldtau+h/m;
Mtau(:,4*j+1:4*j+4)= quad8mod(’int’,oldtau,tau,tol)
+ Mtau(:,4*j-3:4%j);
end;
M=Mtau(:,4*m+1:4*xm+4);



8§ PROGRAMS 35

%/ Forming of the Matrixes for the Blockdiagonal system %X

e_Ah=expm(-A4*h);
Minv=inv(M);
ZZ=Minv=e_Ah;
Ww=e_Ah’=*=ZZ+Minv;

WL=[WW(2,2) WW(2,4); WW(4,2) ww(4,4)]; 7% Partitioning matrixes
ZLU={22(2,2) 22(2,4); 2Z(4,2) 2Z2(4,8)];
ZLL=(22(2,2) 2Z(4,2): 22(2,4) ZZ(4,4)];

WR=[WW(2,1) WW(2,3); WWw(4,1) WwW(4,3)];
ZRU=[ZZ(2,1) Z2(2,3); 2Z(4,1) 2Z(4,3)];
ZRL=[ZZ(1,2) 22(3,2); ZZ(1,4) ZZ(3,4)];

Ulu=[Minv(2,2) Minv(2,4);Minv(4,2) Minv(4,4)];
Uru=[Minv(2,1) Minv(4,1);Minv(2,3) Minv(4,3)];
V1={lambdal alpha2; beta2 lambda2];

Vr=[0 alphal; betal 0];

Y% Forming of the right side of the Blockdiagonal system %
g g g

for i=2:n
Omega(:,i)=ZRL*R(:,i—l)-WR*R(:,i)*ZRU*R(:,i+1);

end;

Omega(:,1)=(Vr-Uru)*R(:,1) + ZRU*R(:,2);

Omega(:,n+1)=ZRL*R(:,n) - (WR-Uru+Vr)*R(:,n+1);

%% Gausselimination to produce upper triangular system %4/

DD(:,1:2)=Ulu-V1;

for i=2:n+1
zd=ZLL*inv(DD(:,2*1-3:2%1-2));
DD(:,2*i-1:2%1)=WL-zd*ZLU;
Omega(:,1i)=Omega(:,i)+zd*Omega(:,i-1);

end

DD(:,2*n+1:2*n+2)= (WL-Ulu+Vl) - zd=*ZLU;



8 PROGRAMS 36

%% Backsubstitution to solve for the xvel ¥

xvel(:,n+1)=DD(:,2*n+1:2*n+2)\Omega(:,n+1);

for i=n:-1:1
xvel(:,1)=DD(:,2*i-1:2%1)\(ZLU*xvel(:,i+1)+Cmega(:,1));

end;

%% Making of state vectors 4k

for i=0:n
x(:,i+1)={[R(1,i+1)]
[xvel(1l,i+1)]
(R(2,i+1)]
(xvel(2,i+1)1];
end;

%, Plotting of trajectory
%% and error estimate calculation

sumnorm=0;
hold on
for j=0:m
eAtau=expm(A*j*h/m) ;
for i=0:n-1
entry=eAtau*(x(:,i+1)+Mtau(:,4xj+1:4xj+4)=Minv=
(e_Ah=*x(:,i+2)-x(:,i+1)));
plot(entry(1),entry(3),’.’)
if errorcalc g
sumnorm = sumnorm + dist(entry(l),entry(3),i,h);
end;
end;
end;

%% Plotting of the control signals %/

if ctrlsignal



8§ PROGRAMS

pause, clg
subplot(2,1,1),hcld on
subplot(2,1,2),hold on
for i=0:a-1
for j=C:m
csignvec(:,j+1)=B’xexpm(-A’*j=h/40)*Minvx
(e_Ah=x(:,i+2)-x(:,i+1));
end;
subplot(2,1,1),plot(i*h:h/m: (i+1)*h,csignvec(l,:))
subplot(2,1,2),plot(ixh:h/m: (i+1)*h,csigavec(2,:))
end;

end;

error=sumnorm/n/m;
end;

function [Q,cat] = quad8mod(F,a,b,tcl)
“Alteration of the original matlab toolbox program. QUADS

%
A
%
A
h
h
h
A
h
h
h
A
h

%

Numerical evaluation of an integral, higher order method.

Q = QUAD8(’F’,A,B,TOL) approximates the integral of F(X)

from A to B to within a relative error of TOL.

'F’ is a string containing the name of the function.

The function must return a 4*4-matrix output value if

given an input value.

Q = Inf is returned if an excessive recursion level is

reached, indicating a possibly singular integral.

QUAD8 uses an adaptive recursive Newton Cotes 8 panmel rule.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by The MathWorks, Inc.

(Q,cnt] = quad8(F,a,b,tol) also returns a function
evaluation count.

Top level initialization, Newton-Cotes weights

w=[3956 23552 -3712 41984 -18160 41984 -3712 23552 3956]/14175;

x:

a + (0:8)%(b-a)/8;



8 PROGRAMS 38

% set up function call

for 1=x
vy = [y feval(F,i)];
end;

% Adaptive, recursive Newton-Cotes 8 panel quadrature
Q0 = zeros(4);

[C,caz] = quad8stpmed(F,a,b,tol,0,w,x,y,R0);

cnt = cat + 9;

end;

funcsion [Q,cat] = quad8stpmod(F,a,b,tol,lev,#,x0,£0,Q0)
%Alteration of the original matlab toclbox program.QUAD8STP

% Recursive function used by QUADS.

% [Q,cat] = quad8stp(F,a,b,tol,lev,w,f,Q0) tries to approximate
% the integral of f(x) from a to b to within a relative error
% of zol.

% T is a string containing the name of f. The remaining

. arzuments are generated by quad8mod or by the recursicn.

% lev is the recursion level.

% w is the weights in the 8 panel Newton Cotes formula.

% %0 is a vector of 9 equally spaced abscissa is the interval.
% £0 is a matrix of the 9 function values at x.

% Q0 is an approximate value of the integral.

% Cleve Moler, 5-08-88.

% Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAX = 10;

% Evaluate function at midpoints

%0 of left and right half intervals.
x = zeros(1,17);

x(1:2:17) = x0;

x(2:2:16) = (x0(1:8) + x0(2:9))/2;

£(:,1:4)= £0(:,1:4);
for i=1:8



8 PROGRAMS

£(:,8%i-3:8%1) = feval(F,x(2*i));
£(:,8%i+1:8%i+4) = £O(:,4*i+1:4%i+4);
end;

% Integrate over half intervals.

h = (b-a)/16;
Q1=0,;Q2=0;
for i=1:9
QL = Q1 + h*w(i)=f(:,4%i-3:4%1);
Q2 = Q2 + haw(10-1)*f(:,69-i%x4:72-ix4d) ;
end;
Q = Q1 + Q2;

Y%, Recursively refine approximations.
if norm(Q - Q0) > tol*norm(Q) & lev <= LEVMAX
¢ = (a+b)/2;
(Q1,cntli] =
quad8stpmod(F,a,c,tol/2,lev+1,w,x(1:9),f(:,1:36),01);
[Q2,cnt2] =
quadBStpmod(F,c,b,tol/2,lev+1,w,x(9:17),f(:,33:68),02);
Q = QL +Q2;
cnt = cat + cntl + cnt2;
end
end;

function res = integrand(v)
global A B C

e_AvB=expu(-A*v)=*B;
Tes = e_AvBxe_AvB’;
end;

function [dl=dist(zx,yy,i,h);
% Initiating search algorithm.

39



PRECEDING PACE BLANK NoP reracn

8 PROGRAMS

8.2 DMaple Program

with(linalg);
with(student);

alphal:=1;
alphal2:=1;
betal:=0;
beta2:=0;
lambdal:=100;
lambda2:=100;

:=15;

c=vector{(n+l);.
X :=t->a*t*Pi-b*sin(t*Pi);
YY:=t->a-b*cos (t*Pi);
for i from 0 to n
do

R[i+1] :=matrix([[XX(-1+i*h)],

[YY(-1+i*h)]]);

od;

A:=matrix([[ 0, 1, 0, O],

[ 0, lambdal, alphal, alpha2?],

(o, o0,0,1],

[ betal, beta2, 0, lambda2]l);
B:=matrix([(0,0], (1,01, (0,0],[0,1]1]);
C:=matrix([[1,0,0,0],[0,0,1,011);

alias(Id = &=())
Aprim:=transpose(4);
Bprim:=transpose(B);
e_At:=t->exponential(-Axt);

41



8 PROGRAMS

e_Aprimt:=t->exponential (-Aprim=t);
eAt:=t->exponential (Axt);
e_Ah:=e_At(h);

integranden:= proc (v)
evalm(e_At(v) &= B &= Bprim &= e_Aprimt(v));

end;

integrera:= proc (funk)
global v;
int(funk,v);

end;

map(integrera,integranden(v));
integralen:=map(simplify,");

evaluera:=proc (funk)
global tau;

subs (v=tau, funk) ;
end;

Mtau:=vector(m+1);
Mtau[1]:=matrix(([0,0,0,0],[0,0,0,0],[0,0,0,0],(0,0,0,011);
tau:=0;

MO:=evalm(map(evaluera,integralen));

for j from 1 to m
do
tau:=j*h/m; :
Mtau[j+1] :=evalm(map(evaluera,integralen)-M0);
od;
M:=Mtau[m+1];

Minv:=evalm(inverse(M));
ZZ:=evalm(Minv&*e_Ah);
WW:=evalm(transpose(e_Ah)&*ZZ+Minv);

42



8 PROGRAMS

WwL:=submatrix(Www, [2,4],[2,4]);
ZLU:=submatrix(ZZ,[2,4],(2.,4]);
ZLL:=transpose(submatrix(2Z, [2,4],[2,4]1));

wR:=submatrix(Ww, [2,4],(1,3]);
ZRU:=submatrix(ZZ,(2,4],[1,3]);
Z3L:=transpose(submatrix(ZZ,(1,31,[2,41));

grel:=vector(n+l);
xrel[1] :=evaln((R[2]-R[1])/h);
x7el[n+1] :=evalm((R(a+1]-R(n])/h);

Czmega:=vector(n+l);
for i from 2 to n
de
Omega(i] :=ZRL&*R[i-1]-WR&*R[i]+ZRUE*R[1+1];
cd;
Ozmega[2] :=Omega [2]+ZLL&*xvel[1];
Cmega[n] : =Omega [n]+ZLU&*xvel [n+1];

DD:=vector(n+1);

DD{2]:=WL;
for 1 from 3 ton
do

zd:=evalm(ZLL&*inverse(DD{i-1]));

DD{i] :=WL-2zd&=*ZLU;

Omegalil :=Omega [i] +zd&*0mega[i-1];
od;

xvel[n]:=linsolve(DD(n],Omega(n]);

for i from n-1 by -1 to 2

do
xvel[i]:=linsolve(DD[i],ZLU&x*xvel(i+1]+0mega(il);

od;

x:=vector(a+1l);
for 1 from O to n

43



REFERENCES

do
x[i+1] :=matrix(([R[i+1] [1,1]],
(xvel(i+1] (1,117,
(RCi+11(2,1]],
(xvel(i+1](2,1]111);
od;

plotlist:=[];

for j from 1 tom

do
tau:=j*h/m;
eAtau:=evalm(edt(tau));

for 1 from 0 to n-1

do
entry:=evalm(eAtau&*(x[i+1]+Mtau[j+1]&*Minv
gx(e_Ah&*x[(1+2]-x{i+11)));

plotlist:={[entry[1,1],entry[3,1]],0p(plotlist)};
od;
od;

plot(plotlist,style=point);

References

[1] Hildebrand, F. B. Introduction to Numerical Analysis. New York: Dover

Publications, Inc. (1987).

44

[2] Kahaner, D., Moler, C., Nash; S. Numerical Methods and Software. Ea-

glewood Cliffs: Prentice-Hall International, Inc. (1989).

[3] Faires J.D., Burden L.R. Numerical Methods. Boston: PWS-KENT Pub-

lishing Company (1993).

[4] Taylor A.E. Introduction to Functional Analysis. New York: Wiley (1958).

[5] Selby S.M. CRC Standard Mathematical Tables. Cleveland: The Chem-

.

ical Rubber Co. (1972)






